8 research outputs found

    Front Form Spinors in Weinberg-Soper Formalism and Melosh Transformations for any Spin

    Full text link
    Using the Weinberg-Soper formalism we construct the front form (j,0)⊕(0,j)(j,0)\oplus(0,j) spinors. Explicit expressions for the generalised Melosh transformations up to spin two are obtained. The formalism, without explicitly invoking any wave equations, reproduces spin one half front-form results of Melosh, Lepage and Brodsky, and Dziembowski.Comment: 16 Pages, RevTex. We continue to receive reprint requests for this paper. So we now archive it her

    Development of Additive Fibonacci Generators with Improved Characteristics for Cybersecurity Needs

    No full text
    Pseudorandom sequence generation is used in many industries, including cryptographic information security devices, measurement technology, and communication systems. The purpose of the present work is to research additive Fibonacci generators (AFG) and modified AFG (MAFG) with modules p prime numbers, designed primarily for their hardware implementation. The known AFG and MAFG, as with any cryptographic generators of pseudorandom sequences, are used in arguments with tremendous values. At the same time, there are specific difficulties in defining of their statistical characteristics. In this regard, the following research methodologies were used in work: for each variant of AFG and MAFG, two models were created—abstract, which is not directly related to the circuit solution, and hardware, which corresponds to the proposed structure; for relatively small values of arguments, the identity of models was proved; the research of statistical characteristics, with large values of arguments, was carried out using an abstract model and static tests NIST. Proven identity of hardware and abstract models suggest that the principles laid down in the organization of AFG and MAFG structures with modules of prime numbers ensure their effective hardware implementation in compliance with all requirements for their statistical characteristics and the possibility of application in cryptographic information security devices
    corecore